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Experiments have shown that bubbles approaching an air-water interface give rise 
to axisymmetric jets projected upwards into the air. Similar jets occur during the 
collapse of cavitation bubbles near a solid surface. I n  this paper we show that such 
jets are well modelled by a Dirichlet hyperboloid, a hyperbolic form of the 
better-known ellipsoid. The vertex angle of the hyperboloid is calculated as a function 
of time and found to agree with the observations of Blake & Gibson (1981) and others. 

The jet is initiated, according to this model, when the vertex angle passes through 
2 arctand2,  or 109.47', a t  which instant the fluid accelerations become large. This 
compares with a vertical angle of 90' in the corresponding two-dimensional flow. 

Further experiments demonstrate that  an axisymmetric standing wave, when 
driven beyond its maximum amplitude, can break by throwing up a jet of the same 
hyperbolic form. Hyperbolic jets may occur commonly in free-surface flows. 

1. Introduction 
In  a recent paper Blake & Gibson (1981) studied the growth and collapse of vapour 

bubbles close to a free surface, both numerically and experimentally. One of their 
experiments is reproduced, in modified form, in figure 1. As the bubble rises and 
expands i t  can be seen to raise and accelerate a thin layer of fluid in the form of a 
spherical dome. Then (starting at about frame no. 30) there emerges a remarkable 
jet rising from the dome along the axis of symmetry. The jet ultimately approximates 
a circular cone with diminishing vertex angle. Such a phenomenon is clearly of 
environmental interest for transfer of water droplets, salt nuclei and organic particles 
from the ocean to the atmosphere by bursting bubbles (see Blanchard & Woodcock 
1980). As indicated by Blake & Gibson, similar jets issuing from the interior surface 
of a cavitation bubble near a solid surface, and directed towards the surface, are 
probably responsible for much of the damage to propellers and other fast-driven 
hydraulic machinery. 

The numerical calculations described by Blake & Gibson agree with their observa- 
tions as far as the initial formation of the jet. However, the mechanism still appears 
somewhat mysterious. I n  the present paper we propose an analytic model for the 
development of the jet. The model is in fact a hyperbolic form of the flow known in 
astrophysics as a Dirichlet ellipsoid, and described for example in Lamb (1932). The 
hyperbolic form, however, does not appear to have been seriously considered, perhaps 
on account of the infinite masses involved, and certain singularities in the time 
dependence, described below. A two-dimensional hyperbolic form has been studied by 
Longuet-Higgins (1972, 1976) in connection with the breaking of surface waves, and 
generalized in more recent papers (1980, 1982). 
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‘FIQVRE 1 .  Jet produced by a gas bubble approaching a free surface (after Blake & Gibson 1981). 
The dashed line represents the trajectory of the assumed centre of the hyperboloid. 

The theory for the three-dimensional hyperboloid is given below in Q 2,  and the case 
of axial symmetry is discussed in detail in $3. One special feature of the flow is the 
occurrence of a ‘jolt ’, or local infinity in the acceleration when the vertex angle of 
the hyperboloid equals 2 arctand2, or 109.5’. This in fact corresponds to the initiation 
of the jet. A comparison with Blake & Gibson’s observations follows in 54, with 
reasonable agreement (see figure 4). 

The degree of correspondence between the observations and this simple theoretical 
model prompted the author to enquire whether a similar flow might be observed in 
other situations. One example that came to mind was the jet thrown up by a standing 
water wave when excited by a vertical or horizontal oscillation of the container 
(Faraday 1831). In  $6 we describe a simple experiment which in effect verifies that 
these jets are, in suitable circumstances, well described by the same theory. 

In the appendix we enquire further into the initial ‘jolt’ and give a physical 
explanation for it. Finally, in $7 we summarize the conclusions and note possible 
implications for the modelling of a breaking wave. 
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2. The Dirichlet hyperboloids 
The theory for Dirichlets' ellipsoids (see Dirichlet 1860) is given in Lamb (1932, 

§382), where i t  is generalized to cover both self-gravitation and rotation of the fluid 
as a whole. For convenience we give here an alternative derivation for the hyperboloids 
in the simplest situation, that  is without rotation or self-gravitation. 

The fluid is assumed inviscid and incompressible and the flow irrotational. The 
velocity potential, relative to  rectangular coordinates (x, y ,  z )  is taken to be of the 
form 

where a ,  b, c are functions of the time t only, and a dot ( * )  denotes time-differentiation. 
Equation (2.1) represents, in fact, the most general expression for a pure straining 
flow that is symmetric in regard to the three coordinate planes. The velocity vector 
is 

V$ = (", U iY,  f.), 
and by continuity we have a 6 6  - +  - +  - =  0, 

a b c  (2.3) 

so that abc = 2L3, (2.4) 
is a constant of the motion. 

the pressure p a t  any point is given by 
The fluid being assumed homogeneous and of unit density and gravity negligible,? 

aa+aa &+b); cc+Cc 
x 2 +  -@- y2+ ___ z 2 + P .  (2.6) 

DP -2- = -+vq v ( - 2 p )  =- 
D t  (:t ' ) a2 C 2  

Surface tension being also neglected, we may take as boundary conditions that both 
p and DplDt vanish on the same surface (cf. Longuet-Higgins 1972, 1976). Thus the 
coefficients of corresponding terms in (2.5) and (2.6) must be in proportion. Hence 

... a a b b c c F  - f - = T + - = - + - = -  

a a b :  b c c  F '  

and on integration aa = K ,  F ,  bb = K2 F ,  C E  = K3 F ,  (2.8) 

where the Ki are constants. A change in scale of a ,  b or c does not alter the velocity 
potential 4, so without loss of generality we may take Kl = - 1,  K2 = K3 = 1 .  Then 
from (2.8) 

(2.9) aa = -bb  = - & ' =  -F ,  

and by (2.5) the free surface p = 0 becomes simply 

2 2  y2 22  - - - - _ -  
a2 b2 c2 - (2.10) 

a hyperboloid with semi-axes a, b and c .  Moreover, the continuity condition (2.3) can 
be written 

aa-bb-cE = 0, (2.11) 

t Alternatively, the flow may be viewed in a free-fail reference frame. 



106 M .  8. Longuet-Higgins 

so that an integration ( i 2 - 6 2 - C 2  = U2 (2 .12 )  

a second constant. When a, b and c have been determined as functions of t ,  then F 
is given by (2 .9 ) .  

In  two special cases the equations can be integrated completely. 
Two-dimensional flow. This corresponds to the limit 

z 2 ~ 3  
C + 0 ,  - + 0 ,  - = l ~ < o o .  

C C 
(2 .13)  

SO 

hence 

(2 .15)  

(2 .16 )  

(2 .17)  

On the other hand we may have 
Axisymmetric flow. This corresponds to 

c = b ,  (2 .18 )  

so 

hence 

and 

hence 
Ut = f r ( l - Z ) ’ d a .  

(2 .19)  

(2 .20)  

(2 .21 )  

(2 .22)  

In  both (2 .17)  and (2 .22)  the right-hand side is expressible as an elliptic integral. 
It is noteworthy that, in the general case, a second surface p = p , ( t )  may be found 

from (2 .5 )  and ( 2 . 6 )  provided that p = p ,  and Dp/Dt = p ,  represent the same surface. 
The equation of the surface must clearly be 

(2 .23)  

from ( 2 . 5 ) ,  and from (2 .6 )  a similar equation with (P+2pS)/I;”on the right. If we then 

(2 .24)  
take 

p ,  = AF 

with A constant, the new surface is a hyperboloid similar to  (2 .10 ) ,  and with semi-axes 
a’, b‘, c‘ given by 

(2 .25)  
a’ b’ c’ 
a b c  
- = - = A -  - ( 1  + 2 4 4 .  

3. The axisymmetric hyperboloid 
The two-dimensional case (2 .17)  has already been discussed (with a different 

approach) by Longuet-Higgins (1972, 1976),  showing, in particular, that  the fluid 
accelerations become infinite when the angle between the asymptotes passes through 
90’. We give now an analogous discussion for the axisymmetric case. 
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The free surface ( k  = 0) is given by 

(3.1) 

This represents a hyperboloid of two sheets, having the x-axis as axis of symmetry 
(see figure 2). A section by the plane z = 0 gives the hyperbola 

To fix the ideas we shall discuss the lower branch, for which x > 0. 

v 
FIGURE 2. Axisymmetric hyperboloid corresponding to (3.1). 

Introduce dimensionless variables 

(3.2) 

(3.3) 

so that ap2 = 2, (3.4) 

and (2 .22)  becomes 
(3.5) 

the lower limit being suitably chosen. The angle between the asymptotes is Zy, where 

by (3.4), and the radius of curvature R a t  the vertex (x, y )  = (a ,  0 )  is given by 

h2 Lp2 2L 
a a a 2 '  

R=-=-=-  (3.7) 
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The velocity of a particle a t  the vertex is (u, 0), where 

Lastly 

U a =  
(1  -a-3)4 

Consider the limit of (3.5) as a + 03. When a > 1 we have 

= (1  - i a - 3 - + - 6 -  . . . ) d a ,  

and so writing 

(3.10) 

(3.11) 

we have 7-70 = a + + ~ - ~ + & a - ~ + .  . . (3.12) 

or a = (7-70)-+(7-70)-2+ . . . . (3.13) 

Hence 

and 

(3.14) 

(3.15) 

It can be shown that the limiting form of the surface is a paraboloid whose dimensions 
contract like t -2  about a point of similarity 0 lying on the axis of symmetry a t  
one-quarter the distance from the vertex of the parabola to  the focus. This limiting 
form is one of the self-similar flows discussed in Longuet-Higgins (1976, $3). 

1.  Writing a = 1 + q ,  q > 0, and 
substituting in (3 .5) ,  we have 

Consider on the other hand the limit as a 

Hence 

2 
7 = [ [ l -  (1 + ~ ) - ~ ) ] & d q  - - d 3  7%. 

3 d3 
and (3.6) and (3.7) give 

tan y - -2(TT>:] ,  

Also, 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

Thus as t + O  the velocities (represented by ci) tend to infinity like t-4 and the 
accelerations (also the normal pressure gradient) tend to infinity like t-i.  Hence the 
motion starts with a weak 'jolt' or shock, just as in the well-known two-dimensional 
case (Longuet-Higgins 1972). Further discussion of this phenomenon is given in the 
appendix. 

Equation (3.19) shows that the limiting angle between the asymptotes is 

lim 2y  = 2 arctan 24 = 109.47O (3.20) 

compared with 90°, or 2 arctan 14, in the two-dimensional case. 
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The function r was calculated numerically by quadrature over the complete range 
1 < a: < 10. Representative values are given in table 1 .  

Figure 3 shows the development of the hyperbola as a function of the dimensionless 
time 7. For illustration we have shown not only the free surface p = 0, but also a 
second surface p = p ,  = hF(t), with h = 1.5. 

We note that values of a: lying in the range (0 < a < 1) correspond to angles 2y 
greater than (3.20). However, we then have az < 2b2 and U2 would be negative. The 
normal pressure gradient at the free surface also changes sign, and there is reason 
to doubt that the flow is stable (cf. Longuet-Higgins 1972). 

- ~~ 

a 7 2Y RI l  
1 QO Qoo00 10947' 2.0000 
1.04 00090 10626' 1 %49 1 
1.16 00676 97.08' 1.4863 
1.36 02078 83.45' 1.0813 
1.64 04417 6791' 07436 
2.00 0.7798 53  13' 05000 
2.44 1.1887 4071' 03359 
2.96 1.6951 3 1.04' 0.2283 
3.56 2.2862 23.78' 01578 
4.24 2.9604 1840° 01112 
5.00 3.7 165 1442' 00800 
5.84 45538 1 1.44' 00586 
6.76 5.47 19 9.20' 00438 
7.76 64706 7.49' 00332 
8.84 7.5496 616' 00256 

10.00 87089 5.12' 00200 

TABLE 1. Values of T, 2y, RIL and F / U z  as functions of a 

F1 
1.5000 
1.3335 
09610 
05963 
03401 
0 1875 
01033 
00578 
00332 
00197 
0 0  120 
00075 
00049 
00032 
00022 
00015 

4. Comparison with observation 
To establish a coordinate system for figure 1 we chose two particular coordinate 

frames, numbers 50 and 80, in which the hyperbolic form of the jet was sufficiently 
clear, and inserted, in each case, the centre of the hyperbola a t  the intersection of 
the asymptotes. The frames being equally spaced in time, a straight line was drawn 
through these two points; the other centres, some of which were less clear, were 
assumed to lie on this line. From each centre, asymptotes were then drawn to the 
hyperbolic part of each profile. The angles 2y between the asymptotes are shown in 
table 2. 

Frame number 

30 
40 
50 
60 
70 
80 
90 

100 

2Y 
104' 
47' 
24' 
15' 
1 0' 
85' 
7' 
6.5' 

T 

0 
1.125 
2.25 
3.375 
4.5 
5.625 
6.75 

12.6 

TABLE 2. Measured values of the angle 2y between the asymptotes in figure 1 
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2ool 
Angle between asymptotes (2y) 

- Theory: (3.6) 

X Observation: Blake & Gibson (1981) 

- 

- 
.. .. 

ool I I I I I I I I 
0 2 4 6 8 

7 

FIQURE 4. Time history of the angle 2y between the asymptotes according to (3.6). The plotted 
points correspond to the observations in figure 1 .  

I n  theory, since the reference frame in $52 and 3 above is inertial, i.e. in free fall, 
the trajectory of the centre C should actually be in a free-fall parabola. However, 
the elapsed time between frames 30 and 100 - 5.5 ms - is so short that  the curvature 
of the trajectory is quite negligible: the maximum deflection would be about one part 
in lo3. 

To obtain a dimensionless time 7, i t  was noted that the angles 2y corresponding 
to the two frame numbers 50 and 80 were 24O and Yo, corresponding to  7 = 2.25 and 
6.75 respectively. The values of 7 for the other frames were then inferred by linear 
interpolation (and extrapolation) giving the numbers shown in column 3 of table 2. 
These have been plotted in figure 4. The agreement with the theoretical curve will 
be seen to be quite good. Especially notable is the observed angle 104' in frame no. 
30, which is only a little less than the critical angle of 109.5O. It appears a coincidence 
that this was one of the frames selected for display. 

I n  figure 10 of Blake & Gibson (1981) there was one further figure (10.11) 
corresponding to a frame number 142. Extrapolation gives for this frame 7 = 12.6 
and hence, from the model of $3,2y = 3-6O. The angle measured from the photograph 
is about 3O, so that the agreement is maintained even as far as this point. 

Near the base of the jet in figure 1 ,  where fluid is apparently being drawn into the 
hyperboloid, close agreement is not to be expected. I n  fact the photographs from 
frame 50 onwards show the formation of a smaller, reverse jet directed into the cavity, 
which by frame 100 has actually penetrated the lower cavity wall. Nevertheless, given 
the unplanned character of the initial conditions, i t  is remarkable that the form of 
the upwards jet should be so stable. 
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The downwards jet appears similar to that produced by a shaped charge (see 
Birkhoff et al. 1948). These authors model the phenomenon by a steady flow. Their 
observations, however, indicate a uniform rate of strain in the jets, more in accord 
with the present theory. 

The asymmetrical collapse of cavitation bubbles in the interior of a fluid or near 
a solid surface has been discussed by Benjamin & Ellis (1966), Plesset & Chapman 
(1971) and many others. From the theory of $ 3  one would expect the maximum 
acceleration of the inwards jet to occur when the ‘angle of indentation’ of the bubble 
reached a critical value of around 109.5’. Such a result appears not inconsistent with 
the numerical calculations shown in figures 1 and 2 of Plesset & Chapman (1971), 
for example. However the development of an inwards jet is necessarily limited in time 
and space by the presence of the cavity walls, so that comparison with the ideal 
hyperbolic form is less feasible than for a bubble breaking a free surface. 

Jets formed by a hollow liquid surface (without lining) have been produced 
artificially by Bowden (1966), and are probably quite a common phenomenon. They 
appear to be similar to the jets arising from the bowl of any small bubble (diameter 
1-2 mm) bursting at a free surface (see Blanchard & Woodcock 1980; MacIntyre 1968, 
figure 1) .  Similar jets may model the ‘splash’ produced after a solid body has fallen 
rapidly through a free surface ; see Worthington (1908). 

5. Standing gravity waves 
The observed tendency towards the formation of jets in cavitation or vapour 

bubbles prompts one to enquire whether a similar phenomenon may occur in other 
situations involving free-surface flows. One example of such a flow is a standing 
gravity wave, driven slightly beyond its maximum amplitude. 

Already in the case of standing waves in two dimensions, i t  was suggested 
(Longuet-Higgins 1972) that  the Dirichlet hyperbola, with a critical angle of 90°, 
might model some of the instabilities found experimentally by Taylor (1953) in 
standing waves of finite amplitude. It was verified recently by Mclver & Peregrine 
(1981) that  numerically calculated profiles of overdriven standing waves do indeed 
conform to the Dirichlet hyperbola. 

Turning now to axisymmetric gravity waves of finite amplitude, we note that in 
a theoretical study Mack (1962) has suggested that a standing wave of maximum 
amplitude should have a critical interior angle of 2 arctan .\/2 a t  the crest - the same 
critical angle that was found above in $3. Mack’s argument, which depends on the 
pressure p being expansible everywhere as a Taylor series, even a t  the crest of the 
wave, resembles the argument put forward by Penney & Price (1952) for a crest angle 
of 90’ in two-dimensional standing gravity waves of limiting amplitude, and so is open 
to the same criticism as was directed against i t  by Taylor (1953), namely, there 
appears no conclusive reason for assuming that a t  the instant of maximum elevation 
there is not a singularity in the pressure p at the crest. Taylor nevertheless showed 
experimentally that the angle a t  the crest of a two-dimensional wave was close to 
90’. We may wonder whether, just as the two-dimensional Dirichlet hyperbola 
describes an overdriven standing wave in two dimensions, so the axisymmetric 
Dirichlet hyperboloid may describe an overdriven axisymmetric standing wave. 

Some controlled experiments on axisymmetric gravity waves of finite amplitude 
were undertaken by Fultz & Murty (1963; see also Edge & Walters 1964). These 
experiments tended to  verify some of Mack’s other theoretical results, but they were 
apparently not carried as far as waves of maximum amplitude. The reason no doubt 



Bubbles, breaking waves and  hyperbolic je t s  at a free surface 113 

lay in the method of wave generation, which was by a plunger close to the free surface, 
on the axis of symmetry. This would tend to generate turbulence, and to interfere 
with the surface a t  the crest. 

However, Faraday (1831) showed that standing waves could be generated in a layer 
of liquid on the surface of a vibrating plate, or by the vertical oscillation of a relatively 
deep vessel of liquid, and that the waves so produced were often of half the frequency 
of excitation. Physically, as we now know, this subharmonic resonance is related to 
the existence, in ordinary standing water waves, of pressure fluctuations at great 
depths having a frequency double the fundamental frequency of the wave (see Miche 
1944 ; Longuet-Higgins & Ursell 1948). These second-order pressure fluctuations 
remain of finite amplitude, i.e. not tending to zero as one descends in the fluid, and 
they have been shown to be responsible for oceanic microseisms of double the 
frequency of the sea waves (Longuet-Higgins 1950; Haubrich, Munk & Snodgrass 
1963). Conversely, one finds that, by creating widespread pressure fluctuations a t  
great depths, standing surface waves of half the existing frequency can be pro- 
duced.t 

I n  $6 we shall describe an experiment in which this type of excitation is used to 
generate an upwards pointing jet. 

6. Experiments on breaking waves 
A cylindrical glass beaker of height 27 cm and internal diameter 164-16.5 cm was 

filled with water to a depth of 18.5 cm and placed on a horizontal wooden platform, 
attached to a Derritron vibrator (type VP4B) as in figure 5 .  The vibrator was driven 
by an electronic oscillator (Type 300WT, Mk 2) capable of producing sinusoidal 
vertical movements of amplitude 0 5  mm a t  frequencies from 0 5  to 1000 Hz. 

I n  the centre of the beaker was placed a thin baffle, consisting of two mutually 
perpendicular sheets of aluminium, each of width 5-08 cm, mounted vertically on a 
brass base, the top of the baffle being about 6.0 cm below the water surface. The 
purpose of this was to  damp out the lower asymmetric modes of oscillation, while 
leaving the axisymmetric modes relatively unhindered. 

The oscillator was driven at a constant frequency f ,  = 6.64 Hz - slightly less than 
twice the calculated resonant frequency of 3.43 Hz for the lowest axisymmetric mode 
of free oscillation (including surface tension but disregarding viscous effects a t  the 
walls of the cylinder). As the amplitude of the oscillator was increased from zero to 
about 0.3 mm, there first appeared a t  the free surface synchronous surface oscillations 
with a fundamental frequency equal to  the forcing frequency. These were axisym- 
metric, with radial modenumber 6. They then gave way to synchronous oscillations 
with azimuthal modenumber 4 or 6. Finally there was a dramatic transition to a 
subharmonic axisymmetric oscillation of half the driving frequency. With the 
amplitude of the vertical excitation set at about 0 3  mm the subharmonic axisym- 
metric mode could be maintained in a quasi-steady state indefinitely, with the 
silhouette of the free surface approaching a sharp corner of about l l O o ,  as, for 
example, seen in figure 6(a ) .  The slight rounding of the crest is due presumably to 
surface tension. 

The attainment of this form was however very sensitive to the chosen frequency 
of excitation. At slightly lower frequencies f ,  the subharmonic axisymmetric mode 
of frequency 4 f e  itself became subject to  subharmonic oscillations, axisymmetric or 
otherwise, notably with frequencies t f e  or f,. 

t For a mathematical analysis based on Matthieu functions see Benjamin & Ursell (1954). 
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FIGURE 5 .  Glass beaker placed on a vertical Derritron vibrator, in a state of rest. The vertical flanges 
on the axis are to  suppress asymmetric modes of oscillation. 

When the axisymmetric oscillation was overdriven by increasing the amplitude of 
excitation to about 0.5 mm, the amplitude of oscillation quickly increased (see figures 
6b-c) and the profile became unstable (figure 6f), ultimately producing an upwards 
jet along the vertical axis (figures 69, 7). The most spectacular jets rose to a height 
of more than 170 ern above the free surface (i.e. ten times the diameter of the flask), 
as proved by splashes found a t  this height on the white cardboard background. These 
however were initiated on the axis of symmetry, near the instant when the free surface 
was a t  its lowest point; the standing wave had already degenerated so far that  it 
somewhat resembled a collapsing bubble (see MacIntyre (1968, figure 1). The fact that 
the tip of the jet was well-formed (i.e. sharply pointed) by the time that it rose above 
the mean level meant that  the time history of the angle could not be measured very 
accurately, a t  least in its early stages. 

Nevertheless, the initial acceleration of some jets, which produced velocities of 
order 8 m/s in less than 0.05 s must have been in excess of 159. 

The conclusions from this experiment are, first, that steady axisymmetric standing 
waves can apparently be generated with a vertex angle less than the supposed critical 
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angle of 109.5’. Second, that by overdriving the waves an unsteady, axisymmetric 
jet, similar to that produced by an expanding gas bubble, can indeed be produced; 
and, third, that the jet originates not near the crest of the wave (where it might have 
been expected), but in the trough of the wave, in a similar way to the main splash 
produced by a small bursting bubble (MacIntyre 1968). The fact that a small 
oscillation of amplitude as little as 0.5 mm can ultimately produce a jet rising to a 
height of over 1.7 m must also be considered remarkable. 

7. Discussion 
We have shown that the axisymmetric jet produced by a gas bubble near a free 

surface is well modelled by the inertial, inviscid, hyperbolic flow described in $3. 
Moreover, a very similar jet has been shown to occur in axisymmetric standing waves 
driven beyond their limiting amplitude. By inference we may expect that such jets 
are a possible characteristic of other types of unsteady free-surface flow. In particular, 
we may take note of a previous suggestion (Longuet-Higgins 1980) that the tip of 
an overturning gravity wave may be suitably modelled by a hyperbolic jet of 
generalized form, in which the principal axes are in rotation. 

It should be emphasized that the jets discussed in this paper are to a high degree 
inertial, that is independent of both gravity and surface tension. In  the initial stages 
of formation, the time scale is too short for these other forces to exert an effect. A t  
later stages both gravity and surface tension may become effective. Gravity causes 
the jet to fall back, and the origin to describe a free-fall trajectory. Surface tension 
can cause the jet to break up into droplets. 

However, the evident stability of the jet under surface tension is remarkable. The 
reason may be that the flow is not simply a uniform inextensible stream, as is assumed 
in the well-known perturbation analysis of a jet of circular cross-section (see Lamb 
1932, $274). In the hyperbolic jet, on the contrary, the free surface is constantly being 
extended, with the consequence that any wavelike perturbation of the flow is being 
drained of energy by the radiation stresses. Conversely, if time were reversed so that 
the free surface were being contracted, the flow would be highly unstable, quite 
regardless of surface tension. 

In two-dimensional breaking waves of plunging type, the jet is continually being 
stretched in the direction of motion, but not in the transverse direction. One therefore 
expects instabilities to appear at first across the flow, with crests aligned parallel to 
the jet. This is what is commonly observed. 

The author is indebted to John Blake for arousing his interest in cavitation bubbles 
and for subsequent stimulating discussions, and to Norman Smith for assistance with 
the experiments described in $6. 

Appendix. The initial ‘shock ’: a physical discussion 
The outstanding feature of the flows described above is the occurrence of a 

singularity in both velocity and acceleration at the critical instant t = 0. What is the 
reason T 

Consider first the two-dimensional flow (2.13) and choose the simplest case when 
the hyperbolic cross-section reduces to a pair of straight lines enclosing the variable 
angle 2y, as in figure 8. It is useful to express the flow in Lagrangian coordinates in 
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0 

FIGURE 8. Illustration of the streamlines and the free surface in a two-dimensional wedge. (The 
vertex angle 2y is shown increasing.) 

which the position (2, y) of a particle is given as a function of t  and the initial position 

x = axo, y = by,. (A 1) 
(",,Yo) by 

Then the velocity (i, 9 )  is (ux,, hy,), satisfying (2.2). The equation of continuity yields 

as in (2.141, with 1 = 1. The particle trajectories are therefore rectangular hyperbolae 
given by 

zy = xo yo = constant 

(see figure 8). 

(A 3) 

On the other hand the pressure field, from the Lagrangian equations 

'I pzo = - xzo x - yzo ij = - aa, 

Pyo - _  - Xy,X-Yy,Y '' = - b6, 1 
is given by p = -i(aUx; + bay;) + F(t). (A 5 )  

By taking F = 0 we ensure that the free surface (p = 0) consists of two straight lines 
through the origin, or alternatively that we are observing the flow out at infinity in 
the (2, y)-plane. 

Consider then a particle P(x, y) in the free surface, and to fix the ideas suppose the 
flow is reversed in time, so that  the vertex angle 2y  is less than 90' and is increasing. 
The tangent PT to the trajectory makes an acute angle OPT with the vector PO. 
Moreover since the trajectory curves always to  the right (i.e. clockwise) the angle OPT 
is increasing towards 90O. On the other hand, the only force accelerating the particle 
is the pressure gradient, which is in the direction of the normal PN to the free surface. 
If there were no force at all, the direction of the tangent to the trajectory would not 
vary. Clearly the only way OT can be made to curve towards the right by the purely 
normal pressure gradient is by making the normal component of velocity increase 
to infinity. 
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0 

X 

FIGURE 9. As in figure 8, but for an axisymmetric, or conical, flow. 

A direct but very brief analytical proof is as follows, From (7.3) we have 

hence 

say. Thus 

x y  - + - = o ,  
X Y  

= 2G(xl+ yji) 

where ( r ,  0) are polar coordinates in the plane, The expression in brackets on the right 
represents the radial acceleration, which vanishes identically. Hence x 2  -y2 is a 
positive constant. But, because of the symmetry of the trajectory about B = 4 5 O ,  we 
see that when x + y then P2 tends t o  y2. These simultaneous requirements are possible 
only if x and y each tend to  infinity. I n  other words, the velocity becomes infinite. 

Turning again to the axisymmetric case we can give a very similar physical 
explanation. The essential difference is that  in the axisymmetric case the trajectory 
of a given particle is no longer symmetric about a line through 0 inclined a t  45' to 
the x-axis. Instead, the tangent to the trajectory becomes normal to the radius vector 
at a different angle y = arctan 4 2 ,  as shown in figure 9. 

A formal proof is as follows. If p denotes (y2 + 2)&, the equation of continuity now 
requires that each trajectory satisfy 

xp2 = xopE = constant, (A 9) 

\-- - - I  

X P 
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say ; therefore d 
dt 
- (k." - 2p2) = 2(&ij - 2pp) 

= 2G(xX+pp)  

= 2Gr(x cos 0 + p sin O ) ,  

where ( r ,  0 )  are now polar coordinates in the (x, p)-plane. The right-hand side vanishes 
as before. Hence x2-2p2 is a constant, and each of xz and p2 must become infinite 
when g2 -P 2p2, that is when p2 + 222, by (A 10). The critical angle is therefore 
2 arctan 2 / 2 .  
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